Abstract

Variable and uncertain conditions associated with increasing renewables introduce prominent challenges in the optimal power system operation and necessitate the reinforcement of flexible capability potential provided by the eligible resources. To address these challenges, some U.S. ISOs have incorporated specific “flexible ramp products” in their short-term scheduling processes. This paper proposes an enhanced modeling approach to underpin flexibility in European Central Dispatch systems; the model employs a “multi-timing” day-ahead scheduling method, which allows for the optimal procurement of such ramp products on an intra-hourly (“real-time”) basis, when concurrently optimizing energy and reserves over hourly time intervals. Additionally, a probabilistic method for the quantification of the flexibility requirements is proposed, to align the real-time system ramping needs with the intra-hourly optimization intervals. The model is evaluated using the Greek power system for three market configurations; results demonstrate enhanced flexibility features in terms of market efficiency and system reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.