Abstract
BackgroundAccurately predicting the pathological response to chemotherapy before treatment is important for selecting the appropriate treatment groups, formulating individualized treatment plans, and improving the survival rates of patients with gastric cancer (GC). MethodsWe retrospectively enrolled 151 patients diagnosed with GC who underwent preoperative chemotherapy and surgical resection at the XXXX Hospital between January 2015 and June 2023. Both pretreatment-enhanced computer technology images and whole slide images of pathological hematoxylin and eosin-stained sections were available for each patient. The image features were extracted and used to construct an ensemble radiopathomics machine learning model. In addition, a nomogram was developed by combining the imaging features and clinical characteristics. ResultsIn total, 962 radiomics and 999 pathomics signatures were extracted from 106 patients in the training cohort. A fusion radiopathomics model was constructed using 13 radiomics and 5 pathomics signatures. The fusion model showed favorable performance compared to single-omics models, with an area under the curve (AUC) of 0.789 in the validation cohort. Moreover, a combined radiopathomics nomogram (RPN) was developed based on radiopathomics features and the Borrmann type, which is a classification method for advanced GC according to tumor growth pattern and gross morphology. The RPN showed superior predictive performance in the training (AUC 0.880) and validation cohorts (AUC 0.797). The decision curve analysis showed that RPN could provide favorable clinical benefits to patients with GC. ConclusionsRPN was able to predict the pathological response to preoperative chemotherapy with high accuracy, and therefore provides a novel tool for personalized treatment of GC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.