Abstract

ABSTRACTThe predictility of dynamics of the machine tool spindles is essential for machining precision. During machining, the machine tool components and the cutting process interact with each other. Accordingly, it is necessary to take the process-machine interaction effects into account in order to predict the spindle's dynamics accurately. This paper presents an integrated model for the prediction of a spindle's dynamics. The model synthesizes the interactive influence between machine dynamics and forces in grinding process. The thermo-mechanical model of the spindle with angular contact ball bearings was built by using the finite-element method. The analytical model was used to calculate the process forces. A coupled simulation was adopted to accomplish the interactive process between the two models. Basing on the integrated model, the bearing stiffness, the natrual frequency, the spindle tip stiffness and deformations of a grinder's spindle were investigated. The prediction of the deformation fluctuations at the spindle tip due to process-machine interaction was also achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.