Abstract

The Río Neuquén Field is located between Neuquén and Río Negro provinces, Argentina. Historically, it has been a conventional oil producer, but it was converted to a tight gas producer from deeper reservoirs. The targeted geological formations are Lajas, which is already a known tight gas producer, and the less-known overlaying Punta Rosada Formation, which is the main objective of the current work. Punta Rosada presents a diverse lithology, including shaly intervals separating multiple stacked reservoirs that grade from fine-grained sandstones to conglomerates. The reservoir pressure can change from the normal hydrostatic gradient to up to 50% of overpressure. There is little evidence of movable water. The key well in this study has a comprehensive set of openhole logs, including pulsed-neutron spectroscopy data, and is supported by a full core study over 597 ft. Additionally, data from several offset wells were used, containing sidewall cores and complete sets of electrical logs. This allowed the development of rock-calibrated mineral models, adjusting the clay volume with X-ray diffraction data, porosity, and permeability with core measurements, and linking the log interpretation to dominant pore-throat radius models from MICP Purcell tests. Several water saturation models were tested, attempting to adjust the irreducible water saturation with NMR and Purcell tests at reservoir conditions. As a result, three hydraulic units were defined and characterized, identifying a strong correlation with lithofacies observed in cores and image logs. A cluster analysis model allowed the propagation of the facies to the rest of the wells (50). Finally, lithofacies were distributed in a full-field 3D model, guided by an elastic seismic inversion. In the main key well, in addition to the openhole logs and core data, a casedhole pulsed-neutron log (PNL) was also acquired, which was used to develop algorithms to generate synthetic pseudo-openhole logs such as bulk density and resistivity, integrated with the spectroscopy mineralogical information and other PNL data, to perform the petrophysical evaluation. This enables the option to evaluate wells in contingency situations where openhole logs are not possible or too risky, and also in planned situations to replace the openhole data in infill wells, saving considerable drilling rig time during this field development phase. Additionally, the calibrated casedhole model can be used in old wells. This paper explores the integration of different core and log measurements and explains the development of rock-calibrated petrophysical and rock type models addressing the characterization challenges found in tight gas sand reservoirs. The results of this study will be crucial to optimize the field development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call