Abstract

BackgroundThe Leishmania developmental life cycle within its sand fly vector occurs exclusively in the lumen of the insect’s digestive tract in the presence of symbiotic bacteria. The composition of the gut microbiota and the factors that influence its composition are currently poorly understood. A set of factors, including the host and its environment, may influence this composition. It has been demonstrated that the insect gut microbiota influences the development of several human pathogens, such as Plasmodium falciparum. For sand flies and Leishmania, understanding the interactions between the parasite and the microbial environment of the vector midgut can provide new tools to control Leishmania transmission.Methodology/Principal findingsThe midguts of female Phlebotomus perniciosus from laboratory colonies or from the field were collected during the months of July, September and October 2011 and dissected. The midguts were analyzed by culture-dependent and culture-independent methods. A total of 441 and 115 cultivable isolates were assigned to 30 and 11 phylotypes from field-collected and colonized P. perniciosus, respectively. Analysis of monthly variations in microbiota composition shows a species diversity decline in October, which is to the end of the Leishmania infantum transmission period. In parallel, a compilation and a meta-analysis of all available data concerning the microbiota of two Psychodidae genera, namely Phlebotomus and Lutzomyia, was performed and compared to P. perniciosus, data obtained herein. This integrated analysis did not reveal any substantial divergences between Old and New world sand flies with regards to the midgut bacterial phyla and genera diversity. But clearly, most bacterial species (>76%) are sparsely distributed between Phlebotominae species.Conclusion/SignificanceOur results pinpoint the need for a more exhaustive understanding of the bacterial richness and abundance at the species level in Phlebotominae sand flies in order to capture the role of midgut bacteria during Leishmania development and transmission. The occurrence of Bacillus subtilis in P. perniciosus and at least two other sand fly species studied so far suggests that this bacterial species is a potential candidate for paratransgenic or biolological approaches for the control of sand fly populations in order to prevent Leishmania transmission.

Highlights

  • Sand flies are vectors of various pathogens, including arboviruses and bacteria, but are best known as the principal vectors of Leishmania, the etiological agent of leishmaniasis, a neglected tropical disease with clinical symptoms varying in form from cutaneous to visceral [1,2]

  • Bacteria have been isolated from the midgut of P. papatasi, a vector of Leishmania major, the etiologic agent of zoonotic cutaneous leishmaniasis (ZCL) [12], and studies have suggested a role for these bacteria in the immune response and homeostasis [12,13,14,15]

  • We determined the number of Colony Forming Units (CFU) of each individual midgut using PCA medium; they ranged from 5 to 121 per individual sand fly midgut

Read more

Summary

Introduction

Sand flies are vectors of various pathogens, including arboviruses and bacteria, but are best known as the principal vectors of Leishmania, the etiological agent of leishmaniasis, a neglected tropical disease with clinical symptoms varying in form from cutaneous to visceral [1,2]. Ingested amastigote parasites undergo a complex developmental cycle within the sand fly and are limited to the midgut of the insect [11]. They take sugar meals derived from a number of different sources, including leaves, fruit, and aphid honeydew Such food sources offer many opportunities to ingest microorganisms [16,17,18]. For sand flies and Leishmania, understanding the interactions between the parasite and the microbial environment of the vector midgut can provide new tools to control Leishmania transmission

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.