Abstract
ABSTRACT As a variable-sample-size control scheme, the sequential probability ratio test (SPRT) chart is favoured due to its sensitivity and high sampling efficiency. It is frequently documented that the SPRT chart inspects only a small number of observations at each sampling stage, making the said chart extremely appealing to quality engineers. In the current literature, most developments of the SPRT chart are established based on the average run length and average time to signal metrics. However, these metrics do not consider sampling efficiency. In this paper, we develop two optimal designs of the SPRT chart, based on (i) the average value of the average number of observations to signal (AANOS) and (ii) the expected value of the AANOS, with consideration of Phase-I process parameter estimation. We develop a model that integrates the concept of optimization and the guaranteed in-control performance (GICP) framework to neutralize the adverse effects of parameter estimation. Results show that the proposed optimal-GICP design preserves satisfactory out-of-control performances for moderate and large mean shifts, while keeping the false alarm rates at reasonably low levels. Finally, we illustrate an example of the SPRT chart with estimated process parameters for monitoring loop height measurements from a wire bonding dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.