Abstract
Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between faulty data and healthy data in rotating mechanical system is imbalanced. Furthermore, there are commonalities between the bearing fault detection, classification, and identification tasks. Based on these observations, this article proposes a novel integrated multitasking intelligent bearing fault diagnosis scheme with the aid of representation learning under imbalanced sample condition, which realizes bearing fault detection, classification, and unknown fault identification. Specifically, in the unsupervised condition, a bearing fault detection approach based on modified denoising autoencoder (DAE) with self-attention mechanism for bottleneck layer (MDAE-SAMB) is proposed in the integrated scheme, which only uses the healthy data for training. The self-attention mechanism is introduced into the neurons in the bottleneck layer, which can assign different weights to the neurons in the bottleneck layer. Moreover, the transfer learning based on representation learning is proposed for few-shot fault classification. Only a few fault samples are used for offline training, and high-accuracy online bearing fault classification is achieved. Finally, according to the known fault data, the unknown bearing faults can be effectively identified. A bearing dataset generated by rotor dynamics experiment rig (RDER) and a public bearing dataset demonstrates the applicability of the proposed integrated fault diagnosis scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.