Abstract

Fake news detection attracts many researchers’ attention due to the negative impacts on the society. Most existing fake news detection approaches mainly focus on semantic analysis of news’ contents. However, the detection performance will dramatically decrease when the content of news is short. In this paper, we propose a novel <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">fake news detection multi-task learning (FDML)</i> model based on the following observations: 1) some certain topics have higher percentages of fake news; and 2) some certain news authors have higher intentions to publish fake news. FDML model investigates the impact of topic labels for the fake news and introduce contextual information of news at the same time to boost the detection performance on the short fake news. Specifically, the FDML model consists of representation learning and multi-task learning parts to train the fake news detection task and the news topic classification task, simultaneously. As far as we know, this is the first fake news detection work that integrates the above two tasks. The experiment results show that the FDML model outperforms state-of-the-art methods on real-world fake news dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.