Abstract

Bioactive small molecules, including steroids, activate multiple signaling pathways in mammalian cells. However, current technologies cannot illuminate such multiple effects of a ligand in mammalian cells. Here, we demonstrate integrated-molecule-format multicolor systems simultaneously visualizing bifacial activities of a ligand, where estrogen receptor alpha (ERalpha) was exemplified to demonstrate the present technology. First, we developed a single-molecule-format probe emitting red bioluminescence for imaging interaction between the phosphorylated ligand binding domain of ERalpha (ER LBD) and the Src homology-2 (SH2) domain of Src. The SH2 domain-linked ER LBD was sandwiched between dissected N- and C-terminal fragments of Pyrophorus plagiophthalamus (click beetle) luciferase emitting red bioluminescence. Second, another single-molecule-format bio-luminescent probe emitting green bioluminescence was constructed to visualize intramolecular interaction between ER LBD and LXXLL motifs. Mammalian cells carrying the two probes emit red and/or green light in response to agonistic and antagonistic activities of a ligand, which correspond to its genomic and nongenomic activities, respectively. Third, the two probes were assembled to make an single-molecule-format multicolor indicator, in which all of the components for ligand sensing and multiple-light emission were integrated. The probe emitted characteristic light spectra in response to various agonists and antagonists. This is the first example where (i) protein phosphorylation was recognized with a single bioluminescent probe and (ii) bifacial activities of a ligand, either agonistic or antagonistic, were simultaneously visualized with multiple colors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call