Abstract

Gas migration behind casings can occur in wells where the annular cement barrier fails to provide adequate zonal isolation. A direct consequence of gas migration is annular pressure build-up at wellhead, referred to as sustained casing pressure (SCP). Current mathematical models for analyzing SCP normally assume gas migration along the cemented interval to be single-phase steady-state Darcy flow in the absence of gravity and use a drift-flux model for two-phase transport through the mud column above the cement. By design, such models do not account for the possible simultaneous flow of gas and liquid along the annulus cement or the impact of liquid saturation within the cemented intervals on the surface pressure build-up. We introduce a general compressible two-fluid model which is solved over the entire well using a newly developed numerical scheme. The model is first validated against field observations and used for a parametric study. Next, detailed studies are performed, and the results demonstrate that the surface pressure build-up depends on the location of cement intervals with low permeability, and the significance of two-phase co-current or counter-current flow of liquid and gas occurs along cement barriers that have an initial liquid saturation. As the magnitude of the frictional pressure gradient associated with counter-current of liquid and gas can be comparable to the relevant hydrostatic pressure gradient, two-phase flow effects can significantly impact the interpretation of the wellhead pressure build-up.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call