Abstract

A finite element model has been developed to determine the effectiveness of a cold compression technique to reduce the large residual stresses generated from quenching solution heat treated T-section components of aluminium alloy AA7050. To compress long components, a multi-step process is required with some amount of overlap. A parametric study has been performed to determine the effect of the compression ratio, friction coefficient, length of overlap and length of the T-section component on the residual stress distribution post-quenching and after subsequent cold compression. Generally, a percentage reduction in the peak residual stress of over 90% was found. The optimal parameters for residual stress relief by cold compression have been suggested from the cases considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.