Abstract

ABSTRACT The accurate prediction of the extraction behaviors of various solutes in PUREX reprocessing process is crucial for the operation and implementation of the actual process. In this paper, an integrated model is developed to predict the extraction behaviors of U, Np, Pu, and HNO3 in the co-decontamination step (1A extraction step) in a pulsed extraction column. The model couples several physical and chemical processes, such as countercurrent flow, mass transfer, and chemical reaction. The mass transfer coefficients and the distribution ratios of U(VI), Pu(IV), Np(IV), Np(V), Np(VI), HNO3 and HNO2 can be obtained using this model. In particular, the redox and disproportion reactions of Np are considered in the model, and the flow direction of Np can be judged under various process conditions and the corresponding influential factors can be analyzed. The judgment is based on the yield calculated from the relative concentration profiles of Np(VI), Np(V), and Np(IV) in the two phases. For neptunium to inter 1AP step, it is necessary to select high nitric acid concentration, low nitrite concentration and especially high flow ratio. For neptunium to inter 1AW step, low nitric acid concentration, high nitrite concentration and low flow ratio are needed. Compared with the experimental data, the relative errors of the distribution ratios of various solutes are less than 30%, and the relative errors of the concentrations of U(VI) and Pu(IV) at the outlet of the organic phase are less than 10%, and our model is indicated to be reliable and applicable for co-decontamination step in the PUREX reprocessing process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.