Abstract

Flood is a very destructive natural disaster in the world that is strongly influenced by land-use change. Therefore, a comprehensive flood risk modeling considering the change in land-use is essential for understanding, predicting, and mitigating flood risk. However, most existing single modeling ignored the derivative effect of land-use change, which may reduce the reality of results. To further address the issue, this study presented an integrated model chain by coupling the Markov-FLUS model, the multiple linear regression and the improved TOPSIS model. By applying it in Guangdong Province, the future land-use simulation, spatialization of hazard-bearing bodies, and determination of flood risk were realized. The results show that the coupled model chain allows for good prediction of flood risk under different scenarios, which could be expressed by flood risk composite index (FRSI). In the natural growth scenario, the flood risk will show markedly increasing trend from 2020 to 2030 (FRSI = 2.06), with the high and highest risk zones will expand significantly. Spatially, these increased high flood risk zones mainly distributed on the periphery of existing built-up lands. On the contrary, the flood risk in ecological protection scenario tends to stabilize (FRSI = 1.98), which may be a reference for alternative development paths. These dynamic information identified by this model chain provides a deeper insight into the spatiotemporal characteristics of future high flood risk areas, which can facilitate reasonable flood mitigation measures to be developed at the most critical locations in the region. In further applications, more efficient spatialization models and climate factor are suggested to be introduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.