Abstract
Bacterial biofilms are the primary cause of infections in medical implants and catheters. Delayed detection of biofilm infections contributes to the widespread use of high doses of antibiotics, leading to the emergence of antibiotic-resistant bacterial strains. Accordingly, there is an urgent need for systems that can rapidly detect and treat biofilm infections in situ. As a step toward this goal, in this work we have developed for the first time a threshold-activated feedback-based impedance sensor-treatment system for combined real-time detection and treatment of biofilms. Specifically, we demonstrate the use of impedimetric sensing to accurately monitor the growth of Escherichia coli biofilms in microfluidic flow cells by measuring the fractional relative change (FRC) in absolute impedance. Furthermore, we demonstrate the use of growth measurements as a threshold-activated trigger mechanism to initiate successful treatment of biofilms using bioelectric effect (BE), applied through the same sensing electrode array. This was made possible through a custom program that (a) monitored the growth and removal of biofilms within the microfluidic channels in real-time and (b) enabled the threshold-based activation of BE treatment. Such BE treatment resulted in a ∼74.8 % reduction in average biofilm surface coverage as compared to the untreated negative control. We believe that this smart microsystem for integrated biofilm sensing and treatment will enable future development of autonomous biosensors optimized for accurate real-time detection of the onset of biofilms and their in situ treatment, directly on the surfaces of medical implants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: ACS applied materials & interfaces
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.