Abstract

This study integrates “TMAH wet etching” “photo-assisted electrochemical etching’, “PtRu binary metal chemical plating”, and “methanol modification” techniques to develop a micro direct methanol fuel cell. The battery electrode plate is made into microchannel + porous silicon (PS) and microchannel + through-silicon via (TSV) plate electrodes using a silicon wafer as the substrate. When the anode and cathode use a PS electrode and TSV electrode, respectively, the maximum open-circuit voltage is 0.4 V, which is 1.5 times the cell using the PS electrode and 6.7 times the cell using the TSV electrode. The PtRu binary metal is uniformly coated on the surface of a graphene and carbon nanotube to form a compound catalyst layer (PtRu/G-CNT), where the Pt and Ru contents are 34.1 wt% and 2.6 wt%, respectively. In the half-cell test, the oxidation current peak of PtRu/G-CNT is 5 mA/cm2, which is 2.02 times and 2.4 times that of Pt/G-CNT and PtRu/G, respectively. When the fuel is mixed with 0.1% surfactant of sodium dihexyl sulfosuccinate, the maximum power density is 0.336 MW/cm2, and the maximum open-circuit voltage is 0.48 V, which are 1.4 times and 1.2 times the case without a surfactant, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.