Abstract

Petroleum resource assessment using reservoir volumetric approach relies on porosity and oil/gas saturation characterization by laboratory tests. In liquid-rich resource plays, the pore fluids are subject to phase changes and mass loss when a drilled core is brought to the surface due to volume expansion and evaporation. Further, these two closely related volumetric parameters are usually estimated separately with gas saturation inferred by compositional complementary law, resulting in a distorted gas to oil ratio under the circumstances of liquid hydrocarbon loss from sample. When applied to liquid-rich shale resource play, this can lead to overall under-estimation of resource volume, distorted gas and oil ratio (GOR), and understated resource heterogeneity in the shale reservoir. This article proposes an integrated mass balance approach for resource calculation in liquid-rich shale plays. The proposed method integrates bulk rock geochemical data with production and reservoir parameters to overcome the problems associated with laboratory characterization of the volumetric parameters by restoring the gaseous and light hydrocarbon loss due to volume expansion and evaporation in the sample. The method is applied to a Duvernay production well (14-16-62-21W5) in the Western Canada Sedimentary Basin (WCSB) to demonstrate its use in resource evaluation for a liquid-rich play. The results show that (a) by considering the phase behavior of reservoir fluids, the proposed method can be used to infer the quantity of the lost gaseous and light hydrocarbons; (b) by taking into account the lost gaseous and light hydrocarbons, the method generates an unbiased and representative resource potential; and (c) using the corrected oil and gas mass for the analyzed samples, the method produces a GOR estimate close to compositional characteristics of the produced hydrocarbons from initial production in 14-16-62-21W5 well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.