Abstract
A novel integrated Mach-Zehnder modulator (MZM) bias controller based on eye-amplitude monitoring is demonstrated in IHP’s 0.25-μm BiCMOS technology. The bias controller monitors the MZM output light, automatically moves the MZM bias voltage to the optimal value that produces the largest eye amplitude, and maintains it there even if the MZM transfer characteristics change due to thermal drift. The controller is based on the feedback loop consisting of Si photodetector, trans-impedance amplifier, rectifier, square amplifier, track-and-hold circuit, comparator, polarity changer, and charge-pump, all of which are monolithically integrated. The area of the controller is 0.083-mm 2 and it consumes 92.5-mW. Our bias controller shows successful operation for a commercially-available 850-nm LiNbO 3 MZM modulated with 3-Gbps PRBS data by maintaining a very clean eye for at least 30 minutes. Without the controller, the eye for the same MZM modulation becomes completely closed due to thermal drift. The data rate is limited by the Si PD integrated in the controller not by the controller architecture. Since our controller is based on the Si BiCMOS technology which can also provide integrated Si photonics devices on the same Si, it has a great potential for realizing a Si MZM with an integrated bias controller, which should fully demonstrate the advantage of electronic-photonic integrated circuit technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.