Abstract

Several studies have proposed methods for modelling and examining the outcomes of engineering change propagation. However, for reasons of practicality, designers need to be supported by simple tools which enable them to model and analyse dependencies among engineering parameters (EPs) in the early design phase. Utilising data gleaned from a prior completed project, this paper proposes a two-stage structural approach to achieve this objective. In the initial stage, interpretive structural modelling (ISM) is utilised to arrange EPs into a simple hierarchical form. In the following stage, cross-impact matrix multiplication (MICMAC) analysis is implemented to classify EPs in terms of their criticality. The results from modelling and analysis show that the proposed approach could be useful to designers opting to use engineering change propagation methods as well as to those who rely only on their experience and knowledge to assess the consequences of changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.