Abstract
PurposeEasily employable quantitative supply chain complexity (SCC) measures considering the significant dimensions of complexity as well as the drivers that represent those dimensions are limited in the literature. The purpose of this paper is to propose an integrated interpretive structural modeling (ISM) and a graph-theoretic approach to quantify SCC by a single numerical index considering the interdependence and the inheritance of the SCC drivers.Design/methodology/approachIn total, 18 SCC drivers identified from the literature are clustered according to the significant dimensions of complexity. The interdependencies established through ISM and inheritance values of SCC drivers are mapped into a Variable Permanent Matrix (VPM). The permanent function of this VPM is then computed and the resulting single numerical index is the measure of SCC.FindingsA scale is proposed by computing the minimum and maximum threshold values of SCC with the help of expert opinions of the Indian automotive industry. The complexity of commercial and passenger vehicle sectors within the automotive industry is measured and compared using the proposed scale. From the results, it is identified that the number of suppliers, increase in spare-parts due to shortened product life-cycle and demand uncertainties increase the SCC of the passenger vehicle sector, while number of parts, products and processes, variety of products and process and unreliability of suppliers increase the complexity of the commercial vehicle sector. The result indicates that various SCC drivers have a different impact on determining the SCC level of these two sectors.Originality/valueThe authors propose an integrated method that can be readily applied to measure and quantify SCC considering the significant dimensions of complexity as well as the interdependence and the inheritance of the SCC drivers that contribute to those dimensions. This index further helps to compare the complexity of the supply chain which varies between industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.