Abstract

We have developed an integrated instrument system of a multiple-ion laminar flow tube (MIFT) reactor combined with a tandem quadrupole mass spectrometer (TQMS) and soft-landing deposition (SD) apparatus. A customized water-cooling magnetron sputtering (MagS) source is designed, by which we are able to attain a highly efficient preparation of metal clusters of 1-30 atoms with tunable size distributions. Following the MagS source, a laminar flow tube reactor is designed, allowing for sufficient gas-collision reactions of the as-prepared metal clusters, which is advantageous for probing magic clusters and minimizing wall effects when probing the reaction dynamics of such clusters. The customized TQMS analyzer involves a conical octupole, two linear octupoles, a quadruple ion deflector, and a 19mm quadruple mass analyzer, allowing to decrease the pressure stepwise (from ∼5 to ∼10-9 Torr), thus ensuring high sensitivity and high resolution of the mass spectrometry analysis. In addition, we have designed a dual SDapparatus for the mass-selected deposition of clusters and their reaction products. For the whole system, abbreviated as MagS-MIFT-TQMS-SD, we have performed a detailed ions-fly simulation and quantitatively estimated the ions transfer efficiency under vacuum conditions determined by real experiments. Taking these advantages, well-resolved Pbn +, Agn +, and Nbn + clusters have been produced, allowing for meticulous studies of cluster reactions under sufficient gas-phase collisions free of electric field trapping. Also, we have tested the efficiency of the dual SD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.