Abstract

This paper describes the architecture and performance of a new high resolution timing generator used as a building block for time-to-digital converters (TDC) and clock alignment functions. The timing generator is implemented as an array of delay locked loops. This architecture enables a timing generator with subgate delay resolution to be implemented in a standard digital CMOS process. The TDC function is implemented by storing the state of the timing generator signals in an asynchronous pipeline buffer when a hit signal is asserted. The clock alignment function is obtained by selecting one of the timing generator signals as an output clock. The proposed timing generator has been mapped into a 1.0 /spl mu/m CMOS process and an r.m.s. error of the time taps of 48 ps has been measured with a bin size of 0.15 ns. Used as a TDC device, an r.m.s. error of 76 ps has been obtained, A short overview of the basic principles of major TDC and timing generator architectures is given to compare the merits of the proposed scheme to other alternatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.