Abstract

BackgroundPlant cell walls are complex structures that full-fill many diverse functions during plant growth and development. It is therefore not surprising that thousands of gene products are involved in cell wall synthesis and maintenance. However, functional association for the majority of these gene products remains obscure. One useful approach to infer biological associations is via transcriptional coordination, or co-expression of genes. This approach has proved useful for several biological processes. Nevertheless, combining co-expression with other large-scale measurements may improve the biological inferences.ResultsIn this study, we used a combined approach of co-expression and cell wall metabolomics to obtain new insight into cell wall synthesis in rice. We initially created a weighted gene co-expression network from publicly available datasets, and then established a comprehensive cell wall dataset by determining cell wall compositions from 29 tissues that almost cover the whole life cycle of rice. We subsequently combined the datasets through the conversion of co-expressed gene modules into eigen-vectors, representing expression profiles for the genes in the modules, and performed comparative analyses against the cell wall contents. Here, we made three major discoveries. First, we confirmed our approach by finding primary and secondary wall cellulose biosynthesis modules, respectively. Second, we found co-expressed modules that strongly correlated with re-organization of the secondary cell walls and with modifications and degradation of hemicellulosic structures. Third, we inferred that at least one module is likely to play a regulatory role in the production of G-rich lignification.ConclusionsHere, we integrated transcriptomic associations and cell wall metabolism and found that certain co-expressed gene modules are positively correlated with distinct cell wall characteristics. We propose that combining multiple data-types, such as coordinated transcription and cell wall analyses, may be a useful approach to glean new insight into biological processes. The combination of multiple datasets, as illustrated here, can further improve the functional inferences that typically are generated via a single type of datasets. In addition, our data extend the typical co-expression approach to allow deeper insight into cell wall biology in rice.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-596) contains supplementary material, which is available to authorized users.

Highlights

  • Plant cell walls are complex structures that full-fill many diverse functions during plant growth and development

  • As NAC transcription factor (TF) have been reported as key regulators of secondary cell wall synthesis in Arabidopsis [64], we propose that the OsNAC gene may play a regulatory role in the cell wall networks associated with Module 40

  • We integrated transcriptomic associations and cell wall metabolism for 29 rice tissues and found that certain co-expressed gene modules are positively correlated with distinct cell wall characteristics

Read more

Summary

Introduction

Plant cell walls are complex structures that full-fill many diverse functions during plant growth and development. The pairwise relationships can be represented as a network structure, in which edges (co-expression relationships) connect nodes (genes) that generally include the majority of genes in a given organism’s genome [1]. Based on these associations, it is possible to predict functional gene clusters, or groups of genes, that participate in common biological pathways [2,3]. Several of these efforts have been implemented as web-based tools, e.g. the Arabidopsis Co-expression Toolkit (ACT) [18], ATTED-II [19], AtCOECis [20], RiceArrayNet (PlantArraynet) [14], Co-expressed biological processes (CoP) database [15], The Gene Co-expression Network Browser [13], and two AraNets [1,9], and PlaNet [21]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call