Abstract
Abstract The presently achieved research results are not effective for the design of complex mechanical products when various methods and tools in different schemes have to be employed at different design stages. A new integrated framework for the optimal design of complex mechanical products is introduced in this research considering modeling, simulation, and optimization aspects. First, a hybrid scheme is developed for the integrated modeling of complex mechanical products. In this hybrid scheme, descriptions of a generic product are modeled by an and-or tree. Feasible design candidates are created from the and-or tree through tree-based search. Geometric descriptions in a design candidate are associated with a computer-aided design (CAD) system. Second, a hybrid simulation method is developed for the evaluation of different product aspects with different simulation tools which are integrated through the hybrid modeling scheme. Simulations with geometric descriptions are conducted by analysis functions of the CAD system. Simulations with non-geometric descriptions are conducted by the knowledge-based systems. Third, a hybrid optimization method is developed to identify the optimal design of the complex mechanical product. For each design candidate, parameter optimization is conducted to obtain the optimal parameter values. The optimal design solution is identified from all design candidates through configuration optimization. A prototype system has been implemented for conceptual design and detailed design of complex mechanical products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computing and Information Science in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.