Abstract

Assessing the mobility of off-road vehicles is a complex task that most often falls back on semi-empirical approaches to quantify the tire-terrain interaction. We introduce a high-fidelity ground vehicle mobility simulation framework that uses physics-based models of the vehicle, tyres, and terrain to factor in both tyre flexibility and soil deformation. The tyres are modelled using a nonlinear finite element approach that involves layers of orthotropic shell elements. The soil is represented as a large collection of rigid elements that interact through contact, friction, and cohesive forces. The high-fidelity vehicle models incorporate suspension, steering, driveline, and powertrain models. To alleviate the prohibitive computational costs associated with a coupled simulation of the overall problem, we propose a decoupled approach implemented as an explicit, force-displacement co-simulation framework which is demonstrated on several full-vehicle on soft soil simulations. UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. #28937.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call