Abstract

The majority of facilities installed in offshore oil and gas fields during the 1980s and 1990s were designed to operate in ‘normal’ conditions. However, during the operational life of the fields, some new high pressure/high temperature (HPHT) wells may be discovered and tied back to older facilities. Operating these facilities beyond their design parameters in harsh environments may lead to catastrophic failures, resulting in significant economic losses and environmental problems. Managing the risks associated with failure of ageing subsea facilities in HPHT environments is considered as a very complex and critical task. To overcome such challenge, there is a need for development of decision-making methods that are capable of estimating precisely the risks associated with HPHT conditions as well as prioritising the risk mitigation and remediation strategies. This paper aims to propose an integrated risk management framework – based on Failure Mode and Effects Analysis (FMEA) approach and a hybrid Multi-Criteria Decision Analysis (MCDA) model – for evaluating the risks and prioritising mitigation strategies over the extended lifetime of subsea facilities in HPHT environments. For the purpose of illustrating the model, a case study of subsea manifold and flowlines is provided and the results are evaluated and discussed. Our findings indicate that the proposed approach offers significant improvement to the classical risk management processes applied to subsea oil and gas facilities as it can assist asset managers, risk analyst, regulators and policy makers with a decision model which considers both subjective (qualitative) judgements and objective (quantitative) evaluation measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call