Abstract

In this paper, a fault detection and diagnosis (FDD) scheme is developed for a class of intensified HEX/reactor, in which faults caused by sensor, actuator, and process are taken into account in the unified framework. By considering overall heat transfer coefficient as a function of fouling and fluid flow rate, a dynamic model which is capable of identifying these two faults simultaneously is derived. Sensor measurements, together with estimation by adaptive high gain observers, are processed, aimed at identifying sensor faults and providing adequate estimation to substitute faulty measurements. Then reliable measurements are fed to several banks of interval filters to generate several banks of residuals; each bank of residuals is sensitive to a particular process parameter/actuator. By evaluating these residuals, process/actuator fault isolation and identification are achieved. The proposed strategy is applied to actual data retrieved from a new intensified heat exchanger reactor. Simulation results confirm the applicability and robustness of the proposed methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.