Abstract

The interconnection between a renewable power generation facility and a power grid poses challenges because of volatility and intermittent characteristics. Energy storage is one of the best solutions for this problem. The object of the present work is to evaluate the features and performances of energy storage system (ESS) with the aim to determine the best available ESS technology. For each one of the storage solutions presented, we have compared key parameters such as: efficiency, lifetime, energy density, capacity, and capital and response time. The paper presents an integrated ESS based on hydrogen storage, especially hydrogen energy technologies for hydrogen production, storage and utilization. Possibilities for integrated ESS coupled wind power to generate hydrogen using electrolyzer with hydrogen-oxygen combined cycle to generate power are discussed, wherein energy efficiency in the range of 49–55 % can be achieved. The results show that the proposed integrated system cannot be constrained by geological conditions and availability of materials, and appears to be an appropriate tool for the development of renewable power. Moreover, a case study is conducted for a special wind power plant. The integrated system is designed based on the daily wind load. Energy efficiency and preliminary economic comparison studies for the integrated system operated in two modes show that up to 50 % average net efficiency. Therefore, the integrated ESS can be useful to mitigate the bottleneck of renewable power development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call