Abstract

In this work an integrated electrode material based on the VS4 nanoparticles grow on three-dimensional network porous biochar is put forward, forming a heterostructure that significantly boost the rate and cycle performance in lithium batteries. Biochar derives from two-steps treatment removing partial cellulose and hemicellulose, possessing three-dimensional network porous structure and naturally nitrogenous. The integrated electrode material constructs the continuous electrons transfer network, accommodates the volume expansion and traps the polar polysulfides efficiently. After 100 cycles at 1C, the integrated electrode with biochar shows the highest specific discharge capacity. Even at 2C, the three-dimensional electrode can display a high specific discharge capacity of 798.6 mAh·g−1. Thus, our study has pointed the innovations approach of constructing integrated electrode materials with porous structure biochar to enhance the electrochemical performance of lithium batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.