Abstract
Many hydrologic systems are likely to be affected by climate change. This is of particular importance given that agricultural production systems are inextricably linked to the hydrologic systems they rely upon. Although irrigation is often employed as a method to dampen the effect of short‐term variation in climatic inputs to agricultural production, sources of irrigation water are not immune to long‐term climatic change. Irrigation water use decisions are most often made at the farm level. It is at this scale that the economic and social impacts of climate change will be manifest. This paper presents an integrated stochastic dynamic modeling framework that can be used to investigate the viability of irrigated farms under alternative climate change scenarios. The framework is applied to a theoretical farm in the Murray Darling Basin, Australia, under four potential future climate scenarios. It is found that neglecting interannual variability in climatic inputs to agriculture consistently underestimates the reduction in farm viability caused by climate change and that multiyear sequences of climate states strongly influence estimates of farm profitability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.