Abstract

Robots face the eventuality of falling. Unplanned events, external disturbances and technical failures may lead a robot to a condition where even an effective dynamic stabilization is not sufficient to maintain the equilibrium. Therefore, it is essential to equip robotic platforms with both active and passive fall protection means to minimize damages, and enable the recovery and restart without physical human intervention. This work introduces a method to design an integrated safety system for two-wheeled humanoids. As a case study, the method is applied to a robot and experimentally tested under several conditions corresponding to different causes of robot instability, such as motor jamming, external disturbances, and sudden shut-down.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.