Abstract

ABSTRACT Laser powder bed fusion (L-PBF) is an additive manufacturing (AM) process that allows to build full dense metal complex part. However, despite the obvious benefits of L-PBF process, it is affected by specific technological drawbacks and it suffers from issues regarding design support tools. In order to fully exploit the advantages of L-PBF, it is necessary to know the technological constraints, such as material availability and the need to minimise the support structures. In this paper, an integrated design procedure that involves topology optimisation, design for laser powder bed fusion rules and finishing requirements is presented in order to define practical guidelines for successful AM of metal parts. The procedure is tested using a case study to prove the effectiveness of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call