Abstract

The purpose of this study is to develop a hybrid methodology that integrates machine learning algorithms with multi-criteria decision making (MCDM) techniques to effectively conduct multi-attribute inventory analysis. In the proposed methodology, first, ABC analyses using three different MCDM methods (i.e. simple-additive weighting, analytical hierarchy process, and VIKOR) are employed to determine the appropriate class for each of the inventory items. Following this, naïve Bayes, Bayesian network, artificial neural network (ANN), and support vector machine (SVM) algorithms are implemented to predict classes of initially determined stock items. Finally, the detailed prediction performance metrics of algorithms for each method are determined. The comprehensive case study executed at a large-scale automotive company revealed that the best classification accuracy is achieved by SVMs. The results also revealed that Bayesian networks, SVMs and ANNs are all capable of successfully dealing with the unbalanced data problems associated with Pareto distribution, and each of these algorithms performed well against all examined measures, thus validating the fact that machine learning algorithms are highly applicable to inventory classification problems. Therefore, this study presents uniqueness in that it is the first and foremost of its kind to effectively combine MCDM methods with machine learning algorithms in multi-attribute inventory classification and is practically applicable in various inventory settings. Furthermore, this study also provides a comprehensive chronological overview of the existing literature of machine learning methods within inventory classification problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.