Abstract

We propose an effective algorithm for power optimization in behavioral synthesis. In previous work, it has been shown that several hardware allocation/binding problems for power optimization can be formulated as network flow problems and be solved optimally. However, in these formulations, a fixed schedule was assumed. In such context, one key problem is: given an optimal network flow solution to a hardware allocation/binding problem for a schedule, how to generate a new optimal network flow solution rapidly for a local change of the schedule. To this end, from a comprehensive analysis of the relation between network structure and flow computation, we devise a two-step procedure: (Step 1) max-flow computation step which finds a valid (maximum) flow solution while retaining the previous (maximum flow of minimum cost) solution as much as possible; (Step 2) min-cost computation step which incrementally refines the flow solution obtained in Step 1, using the concept of finding a negative cost cycle in the residual graph for the flow. The proposed algorithm can be applied effectively to several important high-level data path optimization problems (e.g., allocations/bindings of functional units, registers, buses, and memory ports) when we have the freedom to choose a schedule that will minimize power consumption. Experimental results (for bus synthesis) on benchmark problems show that our designs are 5.2% more power-efficient over the best known results, which is due to (a) exploitation of the effect of scheduling and (b) optimal binding for every schedule instance. Furthermore, our algorithm is about 2.8 times faster in run time over the full network flow based (optimal) bus synthesis algorithm, which is due to (c) our novel (two-step) mechanism which utilize the previous flow solution to reduce redundant flow computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.