Abstract
Four-wheel independently driven electric vehicles (FWID-EV) endow a flexible and scalable control framework to improve vehicle performance. This paper integrates the torque vectoring and active suspension system (ASS) to enhance the vehicle’s longitudinal and vertical motion control performance. While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden. To facilitate the controller design and ease the load, a half-vehicle dynamics system is built and simplified to the linear-time-varying (LTV) model. Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety, energy-saving and comfort requirements. The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption. Finally, the effectiveness of the proposed controller is verified through the rapid-control-prototype (RCP) test. The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.