Abstract

Drug resistance currently poses the greatest barrier to cancer treatments. To overcome drug resistance, drug combination therapy has been proposed as a promising treatment strategy. Herein, we present Re-Sensitizing Drug Prediction (RSDP), a novel computational strategy, for predicting the personalized cancer drug combination A + B by reversing the resistance signature of drug A. The process integrates multiple biological features using a robust rank aggregation algorithm, including Connectivity Map, synthetic lethality, synthetic rescue, pathway, and drug target. Bioinformatics assessments revealed that RSDP achieved a relatively accurate prediction performance for identifying personalized combinational re-sensitizing drug B against cell line–specific intrinsic resistance, cell line–specific acquired resistance, and patient-specific intrinsic resistance to drug A. In addition, we developed the largest resource of cell line–specific cancer drug resistance signatures, including intrinsic and acquired resistance, as a byproduct of the proposed strategy. The findings indicate that personalized drug resistance signature reversal is a promising strategy for identifying personalized drug combinations, which may guide future clinical decisions regarding personalized medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call