Abstract

AbstractTools to evaluate oncogenic kinase activity in small clinical samples have the power to guide precision medicine in oncology. Existing platforms have demonstrated impressive insights into the activity of protein kinases, but these technologies are unsuitable for the study of kinase behavior in large numbers of primary human cells. To address these limitations, we developed an integrated analysis system that utilizes a light‐programmable, cell‐permeable reporter deliverable simultaneously to many cells. The reporter's ability to act as a substrate for Akt, a key oncogenic kinase, was masked by a 2‐4,5‐dimethoxy 2‐nitrobenzyl (DMNB) moiety. Upon exposure to ultraviolet light and release of the masking moiety, the substrate sequence enabled programmable reaction times within the cell cytoplasm. When coupled to automated single‐cell capillary electrophoresis, statistically significant numbers of primary human cells were readily evaluated for Akt activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call