Abstract

Despite concerted efforts by health authorities worldwide to contain COVID-19, the SARS-CoV-2 virus has continued to spread and mutate into new variants with uncertain transmission characteristics. Therefore, there is a need for new data-driven models for determining optimal vaccination strategies that adapt to the new variants with their uncertain transmission characteristics. Motivated by this challenge, we derive an integrated chance constraints stochastic programming (ICC-SP) approach for finding vaccination strategies for epidemics that incorporates population demographics for any region of the world, uncertain disease transmission and vaccine efficacy. An optimal vaccination strategy specifies the proportion of individuals in a given household-type to vaccinate to bring the reproduction number to below one. The ICC-SP approach provides a quantitative method that allows to bound the expected excess of the reproduction number above one by an acceptable amount according to the decision-maker’s level of risk. This new methodology involves a multi-community household based epidemiology model that uses census demographics data, vaccination status, age-related heterogeneity in disease susceptibility and infectivity, virus variants, and vaccine efficacy. The new methodology was tested on real data for seven neighboring counties in the United States state of Texas. The results are promising and show, among other findings, that vaccination strategies for controlling an outbreak should prioritize vaccinating certain household sizes as well as age groups with relatively high combined susceptibility and infectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.