Abstract

The remediation of toxic persistent organic contaminants in the environment has raised a need for effective cleanup methods. In this study, an integrated remediation technique based on biodegradation of naphthalene using Bacillus fusiformis and Fenton oxidation of their degraded metabolites using nanoscale zero-valent iron (nZVI). A 99.0% naphthalene was biodegraded by B. fusiformis in 96h, while only 59.4% chemical oxygen demand (COD) was removed, indicating that the degraded metabolites existed in solution. To further degrade the metabolites, nanoscale zero-valent iron (nZVI) was used as heterogeneous catalyst for Fenton-like oxidation of the metabolites after biodegradation lasting 40h. Results showed that the total the removal COD increased from 36.4% to 91.6% at pH 3.0, 1.0gL−1 nZVI, 10.0mML−1 H2O2 and temperature of 35°C. Scanning electron microscopy (SEM) showed the aggregation and corrosion of nZVI. X-ray diffraction (XRD) confirmed the existence of Fe0 and the presence of iron oxide (Fe(II)) and iron oxohydroxide (Fe(III)). A possible degradation pathway was proposed since two naphthalene metabolites (1-Naphthalenol and 1,4-Naphthalenedione) were detected by GC–MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.