Abstract
As air transportation has increased in recent years, it is necessary for airport planners to optimally manage aircraft ground traffic on stands, taxiways and runways in order to minimize flight delay and passenger dissatisfaction. A closer look at the literature in this area indicates that most studies have merely focused on one of these resources which in a macroscopic level may result in aircrafts’ collision and ground traffic at the airport. In this paper, a new bi-objective Mixed-Integer Linear Programming (MILP) model is developed to help airport management to integrate Gate Assignment Problem (GAP) and Runway Scheduling Problem (RSP) considering taxiing operation for departing flights. The proposed model aims to help airport planners to 1) minimize any deviation from preferred schedule and 2) minimize transit passengers’ walking distance. Due to the complexity of the research problem, a Normalized Weighted Sum Method (NWSM) is applied to solve small-sized problems and two meta-heuristics, namely NSGA-II and MOGWO, are used for large-scale instances to generate Pareto optimal solutions. The performance of these algorithms is assessed by well-known coverage and convergence measures. Based on the most criteria, the results indicate that MOGWO outperforms NSGA-II.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.