Abstract
The agents’ decisions, from their residential location to their members’ trip choices through the network, are jointly analyzed as an integrated long term equilibrium in which the location, travel decisions, and route choices are represented by logit or entropy models. In this approach, consumers optimize their combined residence and transport options represented as paths in an extended network built by connecting the transport sub-network to a fictitious sub-network that represents land-use and transport demand options. We model a static land- use and transport equilibrium by considering road congestion and location externalities. The latter include trip destination choices based on land-use attractions, as well as endogenous neighborhood characteristics that determine residential choices and segregation phenomena. The model can deal with heterogeneous populations and locations as well as multiple trip purposes, though it assumes only private transport modes. In a previous paper we studied the case with road congestion externalities only, characterizing equilibria by a strictly convex and coercive unconstrained minimization problem. This characterization fails for more general externalities, so we restate the model as a fixed-point problem, establishing the existence of equilibria, providing sufficient conditions for its uniqueness and for the convergence of a fixed-point iteration. A small numerical example is used to illustrate the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.