Abstract

We explored the distributional changes in tsunami height along the eastern coast of the Korean Peninsula resulting from virtual and historical tsunami earthquakes. The results confirm significant distributional changes in tsunami height depending on the location and magnitude of earthquakes. We further developed a statistical model to jointly analyse tsunami heights from multiple events, considering the functional relationships; we estimated parameters conveying earthquake characteristics in a Weibull distribution, all within a Bayesian regression framework. We found the proposed model effective and informative for the estimation of tsunami hazard analysis from an earthquake of a given magnitude at a particular location. Specifically, several applications presented in this study showed that the proposed Bayesian approach has the advantage of conveying the uncertainty of the parameter estimates and its substantial effect on estimating tsunami risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.