Abstract

We developed an integrated assessment (IA) using models for energy systems analysis and life-cycle assessment (LCA). Based on this assessment framework, we developed cost-benefit analysis (CBA) case studies for a hypothetical project designed to introduce advanced fossil-fired power generation technologies in China. Our MARKAL model for Japan confirmed that radical reductions (i.e., 80 % by 2050) of carbon dioxide (CO2) could be attained from energy systems alone and that credit for emission allowances was required. We evaluated life-cycle costs and emissions of carbon dioxide, sulfur oxide, and nitrogen oxide gases for the energy technologies using an LCA model. Further, we applied a power generation planning model for six Chinese grids to provide a power mix structure, potentially producing credit by installing fossil-fired power generation technology and by using baseline grid emission factors with an average cost of electricity. Finally, by using dynamic emission reductions and additional costs from the two models, we conducted case studies of CBA for a hypothetical project to install the technologies in China. This was accomplished by evaluating emission reductions in monetary terms and by applying a life-cycle impact assessment model. A unique feature of our IA is its dynamic (time-varying) assessment of costs and benefits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call