Abstract
Buildings are complex assets, characterized by environments and uses that change over time, variable occupancies, and long life cycles. They have high operational costs, mostly due to their energy requirements, and account for 30% to 40% of global greenhouse gas emissions. Consequently, substantial effort has been made to forecast their energy needs, with the scope of optimizing their economic and environmental impact. In this regard, the available literature focuses mainly on short-term modeling through the implementation of sets of physics-based equations (i.e., white-box), functional relationships between input and output variables (i.e., black-box), or a combination of both (i.e., grey-box). On the other hand, more research is required on long-term forecast models with the aim of reducing the energy needs. Within this context, this article presents an original automatic procedure for forecasting the energy needs of buildings in short- and long-term time horizons. This is accomplished by scaling an unknown facility from a similar facility that is already known and by executing a black-box approach based on machine learning algorithms. The proposed method is implemented in real case studies in Italy, predicting the energy needs (i.e., heating, cooling, and electricity) of Sant’Anna Hospital in Ferrara using the historical data of Ca’ Foncello Hospital in Treviso. The results show an adjusted coefficient of determination above 0.7 and an average error below 10% for all the energy vectors, demonstrating a feasible forecast performance with a low training set-to-test set ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.