Abstract

In the development of unconventional shale resources, production forecasts are fraught with uncertainty, especially in the absence of a full, multi-data study of reservoir characterization. To forecast Duvernay shale gas production in the vicinity of Fox Creek, Alberta, the multi-scale experimental findings are thoroughly evaluated. The relationship between shale gas production and reservoir parameters is assessed using multiple linear regression (MLR). Three hundred and five core samples from fifteen wells were later examined using the MLR technique to discover the fundamental controlling characteristics of shale potential. Quartz, clay, and calcite were found to comprise the bulk of the Duvernay shale. The average values for the effective porosity and permeability were 3.96% and 137.2 nD, respectively, whereas the average amount of total organic carbon (TOC) was 3.86%. The examined Duvernay shale was predominantly deposited in a gas-generating timeframe. As input parameters, the MLR method calculated the components governing shale productivity, including the production index (PI), gas saturation (Sg), clay content (Vcl), effective porosity (F), total organic carbon (TOC), brittleness index (BI), and brittle mineral content (BMC) (BMC). Shale gas output was accurately predicted using the MLR-based prediction model. This research may be extended to other shale reservoirs to aid in the selection of optimal well sites, resulting in the effective development of shale resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call