Abstract

Previously, two strategies were disjointly considered for improving system reliability: testing components (to identify and remove failure modes, resulting in reliability growth) and installing redundancies. In this paper, we develop a new model that merges these concepts within an integrated optimization model that maximizes system reliability. Specifically, our model considers a series-parallel system in which the system reliability can be improved by both testing components and installing redundant components. We contribute an exact algorithm that decomposes the problem into smaller integer linear programs. We prove that this algorithm is finite and apply it to a set of instances. Experiments demonstrate that the integrated approach generates greater reliabilities than applying test planning and redundancy allocation models iteratively, and moreover, the integrated approach yields significant savings in computational time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.