Abstract

Land-use and land-cover change are important drivers of global environmental change, affecting the state of biodiversity, the global carbon cycle, and other aspects of the earth system. In this article we describe the development of the land-use model LandSHIFT, which aims to simulate land-use and land-cover change on the continental and global scale. The model is based on a “land-use systems” approach, which describes the interplay between anthropogenic and environmental system components as drivers of land-use change. LandSHIFT’s modular structure facilitates the integration of different components that cover key parts of land-use systems. The model prototype combines a module for the simulation of land-use change dynamics with a module for calculating crop yields and net primary productivity of grassland. LandSHIFT is driven by country-level model inputs including time-series of socio-economic variables as well as agricultural production data. This information is regionalized to land-use grid maps with a cell size of 5 arc-minutes. Here, the model clearly differentiates between the land-use activities settlement, crop cultivation and grazing. By using standardized input–output formats, LandSHIFT can be combined with other models for conducting complex simulation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.