Abstract

Globally, invasive species are identified as one of the most serious threats to ecological stability and biodiversity. Water hyacinth (Eichhornia crassipes), an aggressive invasive aquatic species, has caused severe economic and ecological impacts in the Sacramento-San Joaquin River Delta in California. In the Delta, water hyacinth co-occurs with native pennywort (Hydrocotyle umbellata L.) and non-native water primrose (Ludwigia spp.). All of the species express a wide range of phenotypic variability, making it difficult to map them with remote sensing techniques because their spectral response is highly variable. We present an integrated approach to mapping these floating species using a sequence of hyperspectral methods, such as spectral angle mapper (SAM), linear spectral unmixing (LSU), continuum removal and several indices in a decision tree format. The ensuing tree, based on biophysiological differences between the species, was robust and consistent across three separate years and over multiple flightlines each year, spread across an area of approximately 2500 km2. The most important inputs used to create the tree were reflectance in the short-wave infrared (SWIR), Red Edge Index, near-infrared (NIR) reflectance, LSU fractions and SAM rule values. The floating species were mapped with average accuracy of 88% for water hyacinth, 87% for pennywort and 71% for water primrose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.