Abstract

Human urine is rich in nitrogen and phosphorus, and the presence of these elements in wastewater significantly disrupts the biogeochemical cycle. Meanwhile, green algal biomass cultivation is unfeasible without these nutrients. Hence, the present study integrates wastewater treatment and algae cultivation to extract biodiesel and improve its performance through fuel modification. Chlorella vulgaris algae was cultivated in different dilution ratios of water and urine, and the nutrient removal rate was analyzed. Chlorella vulgaris algae biodiesel (CAB) was derived through Bligh and Dyer's method followed by transesterification, and its functional and elemental groups were analyzed. The various volume concentrations of CAB were blended with regular diesel fuel (RDF), and 10% water was added to a 30% CAB blended RDF to evaluate the combustion performance and environmental impacts. The results of the experiments demonstrated that the algae cultivation effectively removed the wastewater nutrients. The functional and elemental groups of CAB are identical to those of RDF. The engine characteristics of test fuels report that the CAB-blend RDF fuel mixtures generate low carbon footprints, whereas negative impacts have been drawn for performance metrics and oxides of nitrogen emissions. The water-emulsified fuel outweighed the unfavorable effects and promoted more efficient and cleaner combustion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call