Abstract
We analyze the behavior in several solvents of a perspective metal sensor, namely benzonitrile (DMABN-Crown5), a derivative of 4-( N, N-dimethylamino) benzonitrile (DMABN) that exhibits a dual fluorescence due to a twisted intra-molecular charge transfer process. To this end, we extend a stochastic modeling previously employed for DMABN, in which internal degrees of freedom are coupled with an effective solvent relaxation variable. Evaluation of potential energy surfaces using advanced QM approach and estimates of dissipative parameters based on hydrodynamic arguments are discussed. Emission fluorescence is calculated by solving a diffusion/sink/source equation for the stationary population of excited state, and compared to experimentally measured emission fluorescence of DMABN-Crown5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.