Abstract

Flexible and effective manipulation is important and meaningful for the further development and applications of parallel manipulators in the industrial fields, especially for high-performance manufacturing. Web-based manufacturing has emerged as an alternative manufacturing technology in a distributed environment. In this paper, an integrated approach is proposed for remote manipulation of the reconfigurable parallel kinematic machine (RPKM) based on sensor-driven Wise-ShopFloor framework. The concept of Wise-ShopFloor integrates the modules of detailed architecture design, module interactions, sensor data utilization and model predictive control. In order to demonstrate the efficiency of this novel methodology, an example of a five degrees-of-freedom (DOF) RPKM is developed for surface finishing. The reconfigurability, the necessary kinematic analysis, and the performance mapping of the 5-DOF RPKM are conducted so as to implement the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.